This is my first Jupyter Notebook.

In [7]:
import matplotlib.pyplot as plt
import numpy as np
In [17]:
import numpy as np
x = np.linspace (0,2,100)
y=2*x
fig, ax = plt.subplots()
ax.plot (x,y, color='purple')
ax.set_xlabel("x axis")
ax.set_ylabel("y axis")
plt.show()
No description has been provided for this image
In [18]:
x
Out[18]:
array([0.        , 0.02020202, 0.04040404, 0.06060606, 0.08080808,
       0.1010101 , 0.12121212, 0.14141414, 0.16161616, 0.18181818,
       0.2020202 , 0.22222222, 0.24242424, 0.26262626, 0.28282828,
       0.3030303 , 0.32323232, 0.34343434, 0.36363636, 0.38383838,
       0.4040404 , 0.42424242, 0.44444444, 0.46464646, 0.48484848,
       0.50505051, 0.52525253, 0.54545455, 0.56565657, 0.58585859,
       0.60606061, 0.62626263, 0.64646465, 0.66666667, 0.68686869,
       0.70707071, 0.72727273, 0.74747475, 0.76767677, 0.78787879,
       0.80808081, 0.82828283, 0.84848485, 0.86868687, 0.88888889,
       0.90909091, 0.92929293, 0.94949495, 0.96969697, 0.98989899,
       1.01010101, 1.03030303, 1.05050505, 1.07070707, 1.09090909,
       1.11111111, 1.13131313, 1.15151515, 1.17171717, 1.19191919,
       1.21212121, 1.23232323, 1.25252525, 1.27272727, 1.29292929,
       1.31313131, 1.33333333, 1.35353535, 1.37373737, 1.39393939,
       1.41414141, 1.43434343, 1.45454545, 1.47474747, 1.49494949,
       1.51515152, 1.53535354, 1.55555556, 1.57575758, 1.5959596 ,
       1.61616162, 1.63636364, 1.65656566, 1.67676768, 1.6969697 ,
       1.71717172, 1.73737374, 1.75757576, 1.77777778, 1.7979798 ,
       1.81818182, 1.83838384, 1.85858586, 1.87878788, 1.8989899 ,
       1.91919192, 1.93939394, 1.95959596, 1.97979798, 2.        ])
In [21]:
#calculate costs of sequencing 245Mbp at 2001 price, $10,000 1Mbp
cost=0.01
bp1=248
bp2=242
total_cost=cost*bp1+cost*bp2
print(total_cost)
4.9
In [27]:
import pandas as pd

data = pd.read_excel("CHrompose.xltx")
In [28]:
data
Out[28]:
chrmoosomes baspepiars
0 1 248956422
1 2 242193529
2 3 198295559
3 4 190214555
4 5 181538259
5 6 170805979
6 7 159345973
7 8 145138636
8 9 138394717
9 10 133797422
10 11 135086622
11 12 133275309
12 13 114364328
13 14 107043718
14 15 101991189
15 16 90338345
16 17 83257441
17 18 80373285
18 19 58617616
19 20 64444167
20 21 46709983
21 22 50818468
22 X 156040895
23 Y 57227415
In [30]:
cost_2001 = 10000
cost_2011 = 0.1
cost_2021 = 0.01
In [52]:
data['sequencing_cost_2001'] = data['baspepiars']*cost_2001/1000000
data['sequencing_cost_2011'] = data['baspepiars']*cost_2011/1000000
data['sequencing_cost_2021'] = data['baspepiars']*cost_2021/1000000
In [54]:
data
Out[54]:
chrmoosomes baspepiars sequencing_cost_2001 sequencing_cost_2011 sequencing_cost_2021
0 1 248956422 24895642.2 248.956422 24.895642
1 2 242193529 24219352.9 242.193529 24.219353
2 3 198295559 19829555.9 198.295559 19.829556
3 4 190214555 19021455.5 190.214555 19.021456
4 5 181538259 18153825.9 181.538259 18.153826
5 6 170805979 17080597.9 170.805979 17.080598
6 7 159345973 15934597.3 159.345973 15.934597
7 8 145138636 14513863.6 145.138636 14.513864
8 9 138394717 13839471.7 138.394717 13.839472
9 10 133797422 13379742.2 133.797422 13.379742
10 11 135086622 13508662.2 135.086622 13.508662
11 12 133275309 13327530.9 133.275309 13.327531
12 13 114364328 11436432.8 114.364328 11.436433
13 14 107043718 10704371.8 107.043718 10.704372
14 15 101991189 10199118.9 101.991189 10.199119
15 16 90338345 9033834.5 90.338345 9.033835
16 17 83257441 8325744.1 83.257441 8.325744
17 18 80373285 8037328.5 80.373285 8.037328
18 19 58617616 5861761.6 58.617616 5.861762
19 20 64444167 6444416.7 64.444167 6.444417
20 21 46709983 4670998.3 46.709983 4.670998
21 22 50818468 5081846.8 50.818468 5.081847
22 X 156040895 15604089.5 156.040895 15.604089
23 Y 57227415 5722741.5 57.227415 5.722742
In [55]:
total_cost_2001=data['sequencing_cost_2001'].sum()
In [56]:
print(total_cost_2001)
308826983.2
In [57]:
total_cost_2011=data['sequencing_cost_2011'].sum()
In [58]:
print(total_cost_2011)
3088.269832
In [59]:
total_cost_2021=data['sequencing_cost_2021'].sum()
In [60]:
print(total_cost_2021)
308.8269832
In [ ]: